Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902428

RESUMEN

In women, stress urinary incontinence (SUI), leakage of urine from increased abdominal pressure, is correlated with pudendal nerve (PN) injury during childbirth. Expression of brain-derived neurotrophic factor (BDNF) is dysregulated in a dual nerve and muscle injury model of childbirth. We aimed to use tyrosine kinase B (TrkB), the receptor of BDNF, to bind free BDNF and inhibit spontaneous regeneration in a rat model of SUI. We hypothesized that BDNF is essential for functional recovery from the dual nerve and muscle injuries that can lead to SUI. Female Sprague-Dawley rats underwent PN crush (PNC) and vaginal distension (VD) and were implanted with osmotic pumps containing saline (Injury) or TrkB (Injury + TrkB). Sham Injury rats received sham PNC + VD. Six weeks after injury, animals underwent leak-point-pressure (LPP) testing with simultaneous external urethral sphincter (EUS) electromyography recording. The urethra was dissected for histology and immunofluorescence. LPP after injury and TrkB was significantly decreased compared to Injury rats. TrkB treatment inhibited reinnervation of neuromuscular junctions in the EUS and promoted atrophy of the EUS. These results demonstrate that BDNF is essential to neuroregeneration and reinnervation of the EUS. Treatments aimed at increasing BDNF periurethrally could promote neuroregeneration to treat SUI.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Traumatismos de los Nervios Periféricos , Incontinencia Urinaria de Esfuerzo , Animales , Femenino , Embarazo , Ratas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Parto Obstétrico , Modelos Animales de Enfermedad , Músculos/metabolismo , Parto , Traumatismos de los Nervios Periféricos/patología , Ratas Sprague-Dawley , Uretra/patología , Incontinencia Urinaria de Esfuerzo/metabolismo
2.
Exp Neurol ; 343: 113781, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34102241

RESUMEN

OBJECTIVE: Stress urinary incontinence (SUI) is prevalent among older women and can result from insufficient regeneration of the pudendal nerve (PN). Electrical stimulation (ES) of the PN upregulates brain derived neurotrophic factor (BDNF) and accelerates regeneration. Using tyrosine kinase B (TrkB) to reduce the availability of free BDNF, the aim of this study was to determine if BDNF is necessary for accelerated recovery via ES in a model of SUI. METHODS: Our SUI model consists of Female Sprague-Dawley rats, whose PNs were crushed bilaterally twice for 30 s, followed by insertion of a modified Foley catheter into the vagina with balloon inflation for 4 h. These rats were divided into 4 groups: 1) Sham PN crush and sham vaginal distension without electrode implantation and with saline treatment (sham injury); 2) SUI with sham stimulation and saline treatment (SUI); 3) SUI and ES with saline treatment (SUI&ES); and 4) SUI and ES with TrkB treatment (SUI&ES&TrkB). Animals underwent ES or sham stimulation four times a week for two weeks. Four weeks after injury, animals underwent functional testing consisting of leak point pressure (LPP) with simultaneous external urethral sphincter (EUS) electromyography (EMG) and pudendal nerve recordings. Data was analyzed using ANOVA with Holm-Sidak posthoc test (p < 0.05). EUS and PN specimen were sectioned and stained to semi-quantitatively evaluate morphology, regeneration, and reinnervation. RESULTS: LPP and EUS EMG firing rate were significantly increased in the sham injury and SUI&ES groups compared to the SUI and SUI&ES&TrkB groups. EUS of SUI rats showed few innervated neuromuscular junctions compared to sham injured rats, while both treatment groups showed an increase in reinnervated neuromuscular junctions. CONCLUSION: ES accelerates functional recovery via a BDNF-mediated pathway in a model of SUI. These findings suggest ES could be used as a potential regenerative therapy for women with SUI.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Modelos Animales de Enfermedad , Terapia por Estimulación Eléctrica/métodos , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Incontinencia Urinaria de Esfuerzo/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Femenino , Ratas , Ratas Sprague-Dawley , Receptor trkB/administración & dosificación , Recuperación de la Función/efectos de los fármacos , Incontinencia Urinaria de Esfuerzo/fisiopatología
3.
Exp Neurol ; 334: 113438, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32822705

RESUMEN

Peripheral nerve injuries can significantly reduce quality of life. While some recover, most do not recover fully, resulting in neuropathic pain and loss of sensation and motor function. Research on the mechanisms of peripheral nerve regeneration could elucidate poor patient outcomes and potential treatments. This study was designed to determine if brain derived neurotrophic factor (BDNF) is necessary for pudendal nerve regeneration and functional recovery. Peripheral administration of tyrosine kinase B functional chimera (TrkB) was used to inhibit the BDNF regenerative pathway. Female Sprague-Dawley rats received tyrosine kinase B functional chimera (TrkB) or saline after a pudendal nerve crush (PNC) or Sham PNC and were divided into three groups: Sham PNC, PNC + Saline, and PNC + TrkB. Seven days after injury, relative ßII tubulin expression (1.0 ± 0.2) was significantly decreased after PNC + TrkB compared to PNC + saline (2.9 ± 1.0). Three weeks after injury, BDNF plasma concentration (1320.8 ± 278.1 pg/ml) was significantly reduced in PNC + TrkB compared to PNC + saline rats (2053.4 ± 211.0 pg/ml). Pudendal nerve motor branch firing rate (54.0 ± 9.5 Hz) was significantly decreased in the PNC + TrkB group compared to the PNC + saline group (120.4 ± 17.1 Hz); while nerve firing rate of the PNC + saline group was not significantly different from sham PNC rats (121.8 ± 26.6 Hz). This study demonstrated that peripheral administration of TrkB bound free BDNF and inhibited the regenerative response after PNC. BDNF is necessary for normal PN motor branch recovery after PNC.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Regeneración Nerviosa/fisiología , Nervio Pudendo/lesiones , Nervio Pudendo/fisiología , Animales , Femenino , Compresión Nerviosa/efectos adversos , Compresión Nerviosa/métodos , Regeneración Nerviosa/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor trkB/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...